
Wave-particle duality - The Mach-Zehnder interferometer
M. Betz, I. de Lima and G. Mussatto

Formalism

In this part of the material, the mathematical description of the phenomena observed with the
interferometer is presented in some details. The underlying theory, known as wave mechanics or
quantum mechanics, makes use of a rather abstract formalism. However, a reader having some
familiarity with linear algebra, complex numbers, and elementary (exponential and trigonometric)
functions should be able to comprehend the development. A reader not fluent in these subjects, or
not interested in diving in somewhat technical details, should be able anyway to grasp the essential
conceptual aspects, merely by running the animations and reading the short texts that comment
them.

I. Specification of the experimental device

The conventions indicated in the figure below will be used to refer to the various parts of the
interferometer. The latter consists of two semireflective mirrors S1 and S2 and of two totally reflective
mirrors E1 and E2. At the apparatus exit are placed two detectors D1 and D2. Optionally, a third
detector D3 and/or a transparent blade L1 may be inserted in one of the beam’s paths.

The coordinate system has its origin at the center of the beam splitter S1, with the vertical2 axis
pointing downward.
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The following notations shall also be employed:

• lh for the length of the horizontal arms of the apparatus or, in other words, for the distances
between S1 and E1 and between E2 and S2. These distances must be equal.

• lv for the length of the vertical arms of the apparatus or, in other words, for the distances
between S1 and E2 and between E1 and S2. These distances must also be equal, but lv does
not need to be equal to lh.

1This text was originally written in Portuguese, in which lâmina is the word for blade. A reader of this English translation
may perhaps think of the word leaf to recall the motivation for the notation L.

2Here the terms “horizontal” and “vertical” are used in reference to the figure. In the laboratory, the four arms are usually
in the same horizontal plane.



• d for the thickness of the transparent blade, and n for the refraction index of the material of
which it is made.

• yL for the vertical position of the transparent blade.

• ∆D for the distance between the beam splitter S2 and the detectors D1 and D2. It is assumed
that this distance is the same for both detectors.

• xD for the distance between the beam splitter S1 and the detector D3, in case the latter is in
use.

It shall be assumed that the semireflective mirrors are symmetric and do not absorb light. In
this case, it can be shown3 that the reflected component of light undergoes a phase shift of π/2 or
λ/4, where λ is the wave length. In the case of a totally reflective mirror, the phase shift depends
on the type of mirror. However, since in the Mach-Zehnder interferometer each beam component
experiences necessarily one (and only one) such reflection, it suffices that both mirrors be of the
same type for the phase shift they bring about to be in fact irrelevant. For the sake of simplicity, it will
be assumed that each totally reflective mirror also introduces a phase shift equal to π/2.

II. Continuous flux - Plane waves

A. Specification and interpretation of the wave

The propagation through the interferometer of a plane wave, that is, a wave of well-defined fre-
quency f and wave length λ shall be studied first. In quantum mechanics, such a wave corresponds
to a “stationary state”, an uninterrupted flux of particles that are not observed individually. From the
perspective of classical wave theory, this wave describes a radiation flux of constant intensity.

In quantum mechanics, the wave function is a complex function. For a well-defined frequency f ,
it possesses the form4

Ψ(x, y, t) = ψ(x, y) e−iωt , (1)

where
ω = 2πf . (2)

For a plane wave propagating in the x direction, as is the case before the beam enters the apparatus,
one has

ψ(x, y) ≡ ψ0 = eikx , (3)

with
k =

2π

λ
. (4)

Quantum theory interprets the squared norm |Ψ|2 of the wave function as a measure of the intensity
of the beam’s particle flux. With (??) and (??), the initial intensity is5

I0 = |ψ0|2 = 1 . (5)

3See the accompanying material entitled Additional Informations.
4In the interferometer, propagation occurs in the x or in the y direction, depending on the path segment considered.

Therefore, a bidimensional description is required. The third dimension, perpendicular to the apparatus plane, may be
ignored.

5It follows that intensities will be obtained as fractions (or percentages, after multiplication by 100) of the initial intensity.
One should note at this point that the classical description, in which the wave function is real, can be obtained by taking the
real part (or, equivalently, the imaginary part) of all expressions presented here. Such an artifice is in fact frequently used
for convenience reasons. The deduced intensities will then be interpreted as fractions of the initial energy flux (averaged
over one period).



B. Equal propagation through both arms

After encountering the semireflective mirror S1, the wave is divided in two components ψA and
ψB, of equal intensity (1/2). The modulus of each component is therefore equal to 1/

√
2.

The component ψA was transmitted by S1, which did not occasion any phase shift. Therefore,
between S1 and E1,

ψA(S1 → E1) =
1√
2
eikx . (6)

This component is then reflected by E1, which brings about a phase shift of π/2, besides changing
by 90◦ the propagation direction. Hence, after this reflection

ψA(E1 → S2) =
1√
2
ei(klh+

π
2
+ky) , (7)

were lh refers to the horizontal distance traveled by the beam along path A (obviously equal to the
distance between S1 andE1). When it reaches S2, ψA is divided into a transmitted component ψA(D2)
which proceeds toward detector D2, and a reflected component ψA(D1) which heads for detector D1.
This component undergoes a second shift by π/2 upon reflection. Each one of these components
has modulus equal to that of ψA divided by

√
2, hence equal to 1/2. Thus one has

ψA(D1) =
1

2
ei(klh+

π
2
+klv+

π
2
+kx′) =

1

2
ei(klv+π+kx) , (8)

ψA(D2) =
1

2
ei(klh+

π
2
+klv+ky′) =

1

2
ei(klh+

π
2
+ky) , (9)

where a coordinate system (x′, y′) whose origin coincides with S2 has been used temporarily, and
where lv refers to the vertical distance traveled by the beam along path A (obviously equal to the
distance between E1 and S2).

The ψB component was reflected by S1, which resulted in a phase shift of π/2, besides rotating
by 90◦ the direction of propagation. Therefore, between S1 and E2,

ψB(S1 → E2) =
1√
2
ei(ky+

π
2
) . (10)

This component is then reflected by E2, which brings about another phase shift by π/2, and also
rotates again by 90◦ the direction of propagation. Therefore, after this reflection

ψB(E2 → S2) =
1√
2
ei(klv+

π
2
+π

2
+kx) =

1√
2
ei(klv+π+kx) , (11)

where use has been made of the fact that the vertical distance traveled by the beam on path B
(obviously equal to the distance between S1 and E2) is also equal to lv. When it reaches S2, ψB
is divided into a transmitted component ψB(D1) which proceeds to detector D1, and a reflected
component ψB(D2) which heads for detector D2. This component suffers a third shift by π/2 as it is
reflected. Each one of these components has modulus equal to the modulus of ψB divided by

√
2,

hence equal to 1/2. Thus, one has6

ψB(D1) =
1

2
ei(klv+π+klh+kx

′) =
1

2
ei(klv+π+kx) , (12)

ψB(D2) =
1

2
ei(klv+π+klh+

π
2
+ky′) =

1

2
ei(klh+

3π
2
+ky) . (13)

6Here is used the fact that the distance between E2 and S2 is lh.



Combining (??) and (??), one obtains the resultant wave that reaches D1:

ψ(D1) = ψA(D1) + ψB(D1) =
1

2
ei(klv+π+kx) +

1

2
ei(klv+π+kx) = ei(klv+π+kx) . (14)

Similarly, combining (??) and (??), the resultant wave reaching D2 is:

ψ(D2) = ψA(D2) + ψB(D2) =
1

2
ei(klh+

π
2
+ky) +

1

2
ei(klh+

3π
2
+ky)

=
1

2
ei(klh+

π
2
+ky)(1 + eiπ) = 0 , (15)

where the well-known formula eiπ = −1 has been used. Thus, it turns out that the wave reaching
D1 has amplitude (and therefore intensity) equal to that of the incident wave, whereas nothing is
recorded by D2. Actually, this result is quite easy to understand. The waves that reach D1 following
paths A and B both undergo one reflection by a semireflecting mirror. Therefore, they arrive with the
same phase and interfere constructively. As for the waves reaching D2, the one that follows path A
is not subjected to any reflection by a semireflecting mirror. In contrast that which travels along path
B is reflected successively by both semireflecting mirrors and therefore its phase is shifted by half a
wave length with respect to the first one. The interference is completely destructive. As has already
been made clear, the totally reflecting mirrors may be ignored in this argument.

C. Transparent blade in one of the arms

Consider now what happens when a transparent blade L of thickness d, made of a material of
refraction index n, is inserted on path A, for example on the way between E1 and S2.

It is well known that in a material medium of refraction index n, the speed of light is c/n, being c
the velocity of light in vacuum.7 Therefore, since the wave frequency is not affected by the material,
the latter induces a modification of the wave length λ resulting in a value λ′ given by

λ′ =
c

nf
=
λ

n
. (16)

Correspondingly, the wave number k becomes

k′ =
2π

λ′
= nk . (17)

It follows that the presence of the material occasions a phase shift in the component ψA, given by

φ = (k′ − k)d = (n− 1)kd . (18)

Since a phase shift of 2π corresponds to one wave length, this result may be interpreted as a spatial
shift of the wave fronts by

ϕ = (n− 1)d . (19)

Thus, with the introduction of the blade, expression (??) gets modified in the following manner:

ψA(E1 → S2) =

{
1√
2
ei(klh+

π
2
+ky) for y < yL

1√
2
ei(klh+

π
2
+φ+ky) for y > yL ,

(20)

7The velocity of light in air is practically equal to c.



where yL is the blade’s vertical position. The corresponding modifications of expressions (??) and
(??) are

ψA(D1) =
1

2
ei(klv+π+φ+kx) , (21)

ψA(D2) =
1

2
ei(klh+

π
2
+φ+ky) . (22)

From this, the modifications of expressions (??) and (??) are as follows:

ψ(D1) = ψA(D1) + ψB(D1) =
1

2
ei(klv+π+φ+kx) +

1

2
ei(klv+π+kx)

= ei(klv+π+
φ
2
+kx) cos

φ

2
, (23)

ψ(D2) = ψA(D2) + ψB(D2) =
1

2
ei(klh+

π
2
+φ+ky) +

1

2
ei(klh+

3π
2
+ky)

= ei(klh+
π
2
+φ

2
+ky) i sen

φ

2
. (24)

Altogether, for a unit intensity of the incident beam, the intensities observed in the two detectors are

I(D1) = cos2
φ

2
, (25)

I(D2) = sen2φ

2
. (26)

By modifying the thickness d of the blade and/or the refraction index n of its material, it is possible
to modify at will these relative intensities. In the visualization, the blade’s thickness may be varied
between 0 and 2λ, and the refraction index between 1 and 2. These intervals are sufficient for it to be
possible to obtain any given percentages for the relative intensities measured.

III. Monophotonic states - Wave packets

A. Single-photon wave packet

As is well known, although it is formulated as a wave theory, quantum mechanics needs to be
interpreted in terms of corpuscles, since the individual events that are observed - clicks in detectors
or impacts on a screen - are localized in space and time. The relation between the wave formalism
and the experimental facts is statistical. Specifically, in the case of the interferometer, the corpuscles
are photons. It is possible to arrange the apparatus in such a manner as to observe the photon
impacts on a screen. The undulatory aspect manifests itself in the interference pattern formed be
accumulating a large number of impacts. Another procedure, which will be employed here, consists
simply in using photon counters as detectors. As will be seen below, the undulatory aspect then
manifests itself in the numbers of photons counted.

In order to analyze in details the propagation and detection of photons, one needs to describe
mathematically the state of a single photon. For this purpose, a wave packet8 must be constructed,
that is, a superposition of plane waves, with different values of the wave number k. Mathematics

8The association of a wave packet to a photon is not without limitations. See the accompanying material entitled
Additional Informations for references.



demonstrates that if one wishes to form a wave packet localized in a region of size ∆x, one needs to
superpose plane waves whose wave numbers differ at least by values of order9 ∆k, such that

∆k ' 1

∆x
. (27)

Quantum mechanics stipulates relationships between the physical quantities associated to the
wave and those associated to the particle. In particular, it postulates the following relation between
the momentum p of the particle and the wave length λ of the wave:

p =
h

λ
, (28)

where h is the famous Planck constant, a new fundamental constant that is ubiquitous in quantum
physics. Using (??), this relation may be rewritten in the form

p = h̄k , (29)

with h̄ = h/2π. Thus, the mathematical condition (??) leads to the physical condition

∆p∆x ' h̄ , (30)

where ∆p is the dispersion or indeterminacy in the value of the momentum. It is worth emphasizing
that minimal values of the dispersions are concerned here. This condition is known as Heisenberg’s
indeterminacy (or uncertainty) relation.

In order for the wave packet to describe a photon of approximately defined momentum, one must
have

∆p << p or ∆k << k , (31)

where p is the average momentum and k the average wave number. From relation (??), it is easy to
deduce

∆λ

λ
=

∆k

k
, (32)

where λ is the average wave length. From (??) and (??), it follows that

∆x >>
1

k
, (33)

or equivalently, using (??) again,
∆x >> λ . (34)

In words, the size of the wave packet must be much bigger than the average wave length.
The conclusion that has just been reached has some implications for the visualization, on the

screen, of a monophotonic state. Associating to the photon a packet which is visible but not very
large, the wave length ends up being too small to be shown on the screen. If, as was done above,
one introduces on the beam path a blade whose maximum thickness is two wave length, it becomes
also impossible to discern this thickness at the screen’s scale. For this reason, in the animation, a
lens is provided to the user when he needs to see the blade in order to set its thickness.

With supposition (??), the phase shift introduced by the blade is approximately the same for all
waves that compose the packet and is given, in terms of the mean wave number, by an expression
analog to (??):

φ = (n− 1) k d . (35)
9Inequalities denoted by the symbol ', similarly to those denoted by << and >>, express relationships between orders

of magnitude. Factors of “order one”, such as 2 or π, are ignored.



The spacial shift of all wave fronts, and therefore of the packet, is given by (??). Being of the same
order of magnitude as the blade’s thickness, it is equally imperceptible at the scale of the screen.

In order to describe the photon’s propagation in the plane of the interferometer, it is necessary to
construct a bidimensional packet, whose general form is

Ψ(x, y, t) =

∫
dk1 dk2

2π
g(k1, k2) e

i[k1x+k2y−ω(k1,k2)t] , (36)

where
ω(k1, k2) =

√
k21 + k22 c . (37)

Relation (??) ensures that the packet propagates with velocity c. The motion desired for the photon
determines the characteristics of the function g(k1, k2). For example, in order for the packet to de-
scribe a photon propagating in the direction of the x axis with average momentum p = h̄k, g(k1, k2)
must be a function centered at k1 = k and k2 = 0, with dispersions ∆k1 << k and ∆k2 << k. Writing
k1 = k + k′1, one may then approximate (??) by

ω(k1, k2) =
√

(k + k′1)
2 + k22 c ' k

√
1 + 2

k′1
k
c ' k(1 +

k′1
k

) c = (k + k′1) c , (38)

where terms of second order in ∆k1/k and ∆k2/k have been neglected. Thus, expression (??) takes
the form

Ψ(x, y, t) = eik(x−ct)
∫
dk′1 dk2

2π
g(k′1, k2) e

i[(k′1(x−ct)+k2y] = eik(x−ct)Φ(x− ct, y) , (39)

where the notations
g(k′1, k2) = g(k + k′1, k2) (40)

and

Φ(x, y) =

∫
dk′1 dk2

2π
g(k′1, k2) e

i(k′1x+k2y) (41)

have been introduced. Since function g(k′1, k2) is centered at k′1 = k2 = 0, function Φ is centered at
x = y = 0. In order to allow the probabilistic interpretation of the theory, the latter function should be
normalized: ∫

|Φ(x, y)|2 dx dy = 1 . (42)

The wave function (??) corresponds to a packet whose center propagates with positive velocity c
in the xS direction along the line y = 0, passing through x = 0 at t = 0. For the sake of simplicity in
further developments, the compact notation10

|ct, 0〉 ≡ eik(x−ct)Φ(x− ct, y) (43)

will be used for this packet. It is easy to generalize this to the case of a packet whose center propa-
gates with positive velocity c along the line y = y0 and goes through x = x0 at t = 0:

|ct+ x0, y0〉 ≡ eik(x−x0−ct)Φ(x− x0 − ct, y − y0) . (44)

Analogously, a packet whose center propagates with positive velocity c in the y direction along the
line x = x0 and passes by y = y0 at t = 0 may be written

|x0, ct+ y0〉 ≡ eik(y−y0−ct)Φ(x− x0, y − y0 − ct) . (45)
10This notation is inspired by that introduced by P. A. M. Dirac to systematize the formalism of quantum mechanics.

However, it is employed here in an informal manner only.



B. Inclusion of the detectors

In order to be able to discuss the measurement process in quantum mechanics, it is necessary to
include the detectors, which are photon counters, in the description. Denoting by χ1 and χ2 the states
of counters D1 and D2, one may assume that these are in the state χ(0) before a photon arrives and
that the passage of the photon through a counter induces the transition χ(0) → χ(1) in the state of
the latter. It will be assumed that, after registering this event and therefore increasing by one unit the
number of counts it indicates, a counter returns to the state χ(0), waiting for the next photon.

C. Propagation of the packet through the apparatus

Using arguments identical to those developed for a plane wave, one may now write the expression
of the wave function associated to the photon and the counters in the various parts of the interfer-
ometer. In order to be able to specify the time ordering of the reflections by the mirrors, it will be
assumed that lh > lv. For convenience, the relation

eiπ/2 = i , (46)

will be invoked to write the additional phase introduced by each reflection. Since the system of
two detectors remains in the state χ1(0)χ2(0) until the last step in the process (the counting of the
photon), it will be omitted for simplicity in the description of the steps anterior to the last one.

Suppose that the wave packet reaches the beam splitter S1 in t = 0. Before that, the photon’s
state is

Ψ = |ct, 0〉 for t < 0 . (47)

After passing through the splitter S1, and before reaching the mirror E2, the quantum state is

Ψ =
1√
2
|ct, 0〉+ i

1√
2
|0, ct〉 for 0 < ct < lv . (48)

After reflection by mirror E2, but before reflection by mirror E1, the state is (using i2 = −1)

Ψ =
1√
2
|ct, 0〉 − 1√

2
|ct− lv, lv〉 for lv < ct < lh . (49)

After reflection by mirror E1, but before reaching the blade L, the state is

Ψ = i
1√
2
|lh, ct− lh〉 −

1√
2
|ct− lv, lv〉 for lh < ct < lh + yL . (50)

Within the assumptions already discussed, the blade L merely induces a phase shift φ in the com-
ponent that goes through it. Hence, after the passage of the component through the blade, the state
is

Ψ = i
1√
2
eiφ |lh, ct− lh〉 −

1√
2
|ct− lv, lv〉 for lh + yL < ct < lh + lv . (51)

Since the next steps involve the detection process, the detectors will be included in the state’s
description from now on. After going through beam splitter S2 but before detection, the total state of
the system is

Ψtot = {i 1√
2
eiφ[

1√
2
|lh, ct− lh〉+ i

1√
2
|ct− lv, lv〉]

− 1√
2

[
1√
2
|ct− lv, lv〉+ i

1√
2
|lh, ct− lh〉]}

× χ1(0)χ2(0) for lh + lv < ct < lh + lv + ∆D , (52)



where ∆D denotes the distance between the splitter S2 and the detectors, which shall be assumed
to be the same for both detectors. Rearranging terms, expression (??) may be simplified as:

Ψtot = −eiφ/2 [sen
φ

2
|lh, ct− lh〉+ cos

φ

2
|ct− lv, lv〉]

× χ1(0)χ2(0) for lh + lv < ct < lh + lv + ∆D . (53)

The interaction of the photon with the detectors, which takes place at time t = (lh + lv + ∆D)/c,
transforms this state into

Ψtot = −eiφ/2 [sen
φ

2
|lh, ct− lh〉 × χ1(0)χ2(1) + cos

φ

2
|ct− lv, lv〉 × χ1(1)χ2(0)] . (54)

D. Interpretation of the measurement and collapse of the wave packet

Up to this point, the evolution of the state of the system, including the counters, unfolded without
intervention of an observer, who would witness the click of one of the detectors, or of a computer
that would register the increase by one unit of the number of photons already accumulated by one
of the counters. Such an intervention is necessary for it to be possible to talk about the result of the
experiment. If counter D1 registers one more photon, its state changes to χ1(1). According to the
usual interpretation of quantum mechanics, the probability for this to occur is given by the modulus
squared of the coefficient of the corresponding term (the second one) of expression (??) above, that
is,

P (D1) = | − eiφ/2cos
φ

2
|2 = cos2

φ

2
. (55)

Similarly, if counter D2 registers the photon, it ends up in state χ2(1). The associated probability is
deduced from the coefficient of the first term of the complete state (??):

P (D2) = | − eiφ/2sen
φ

2
|2 = sen2φ

2
. (56)

As is immediately verified, expressions (??) and (??) for the probabilities are identical to expres-
sions (??)-(??) of intensities in the classical theory. The theoretical computation of these probabilities
is what the formalism of quantum mechanics permits. It is not possible to predict the result of an in-
dividual measurement. In order to verify experimentally the theory, it is necessary to repeat the
measurement many times. If a large number of photons is sent through the apparatus and counters
D1 and D2 register, respectively, N1 and N2 photons, then the ratios N1/(N1 +N2) and N2/(N1 +N2)
should approximate closely the theoretical values for probabilities P (D1) and P (D2).

After detection by counter D1, the photon state will be given by the part of the second term of
expression (??) that relates to the photon, that is, by the wave packet

Ψ1 = |ct− lv, lv〉 for ct > lh + lv + ∆D . (57)

On the other hand, if it was counter D2 that registered the passage of the photon, the latter subse-
quent state is easily extracted from the first term of (??):

Ψ2 = |lh, ct− lh〉 for ct > lh + lv + ∆D . (58)

It should be noted that the coefficients (functions of the phase shift φ) present in (??) have been
omitted in (??) and (??). The reason for this is that these states should be normalized, that is, the
total probabilities associated to them should be equal to unity. If counter D1 went off, the photon
must necessarily been observed exiting from it (or being absorbed by it); idem for counter D2. The



global phases of the states are irrelevant and were chosen equal to 1 in (??) and (??). The reduction
of the photon state described by (??), to state (??) or to state (??), depends on the measurement
result; this is the (in)famous collapse of the wave packet. Although this collapse is made explicit in
the visualizations, it should be recognized that its conceptualization is quite problematic. Should it be
thought of as a real physical phenomenon, or merely as a step in a logical argument? This question
is discussed further in the next section.

E. What path did the photon follow?

The development above was based on the linear superposition of the wave-packet components
that describe the march of the photon along the two alternative paths A and B. One may ask what
happens if one tries to find out which of the two paths a given photon really took. In order to answer
this, a detectorD3 may be introduced on pathA, at the place indicated in the figure. It will be assumed
that xD < lv, but the reader will easily convince himself that the conclusions reached do not depend
on the position of D3, as long as it is somewhere on path A. It will be assumed that this detector is
initially in state χ3(0) and switches to state χ3(1) when it registers the passage of the photon.

Until the wave packet reaches detector D3, nothing new happens and one may use (??) to de-
scribe the state of the photon, merely inserting also the state of the detector:11

Ψ = [
1√
2
|ct, 0〉+ i

1√
2
|0, ct〉]× χ3(0) for 0 < ct < xD . (59)

Only the first term of this expression corresponds to the propagation of the packet along path A,
therefore only for this term will there be a change in the state of detector D3. Hence, in t = xD/c, the
state above becomes

Ψ =
1√
2
|ct, 0〉 × χ3(1) + i

1√
2
|0, ct〉 × χ3(0) . (60)

According to the already presented interpretation of what happens when a counter actually finds out
if a photon is there or not, one may deduce from the above expression that the probability of counter
D3 clicking is 1/2 and that, if this occurs, the photon’s state becomes

ΨA = |ct, 0〉 . (61)

The probability of the counter not clicking is also 1/2 and, in that case, the state of the photon
“collapses” to12

ΨB = i|0, ct〉 , (62)

which corresponds to a packet propagating exclusively along path B.
From then on, since the photon is in state (??) or in state (??), but not in a superposition of

these two states, one needs to trace separately the evolution of each one of the states through the
remainder of the apparatus. The results for (lh + lv)/c < t < (lh + lv + ∆D)/c, that is before the
detection by D1 or D2 can be easily extracted from expression (??):13

ΨA = i eiφ[
1√
2
|lh, ct− lh〉+ i

1√
2
|ct− lv, lv〉]× χ1(0)χ2(0) , (63)

ΨB = −[
1√
2
|ct− lv, lv〉+ i

1√
2
|lh, ct− lh〉]× χ1(0)χ2(0) . (64)

11Detectors D1 and D2 do not need to be considered at this stage of the argument.
12The factor i in (??) merely introduces a global phase which is unobservable and may be dropped.
13The states of detectors D1 and D2 are now included, but the state of detector D3, which already played its role, is

omitted.



At t = (lh + lv + ∆D)/c, the detectors are reached and these states are changed into

ΨA = i eiφ[
1√
2
|lh, ct− lh〉 × χ1(0)χ2(1) + i

1√
2
|ct− lv, lv〉 × χ1(1)χ2(0)] , (65)

ΨB = −[
1√
2
|ct− lv, lv〉 × χ1(1)χ2(0) + i

1√
2
|lh, ct− lh〉 × χ1(0)χ2(1)] . (66)

It can be seen that the transparent blade introduced on path A only modifies the global phase of the
packet, which does not lead to any observable effect. In both cases - path A or pathB - the probability
of a click is 1/2 for D1 as well as for D2. In effect, the act of finding out which path the photon followed
destroyed the interference between the two paths. As before, if D1 goes off, the photon’s state after
the counting will be described by (??); in case D2 goes off, the state will be given by (??).

It is interesting to contrast the effect, on the state of the photon, of the two devices that were
introduced in one of the arms of the interferometer: the blade and the detector. The blade introduces
a phase shift in the component of the packet that goes through it, without affecting the coherence
between the two components. In contrast, the detector “wipes out” one of the components. Why
such a difference? Because the blade is merely an additional element added to the system, and
not a device that provides information about the latter. On the other hand, the detector registers
a new information. The modification of the state of the system - the collapse - corresponds to the
incorporation in the description of the said new information. It is particularly noteworthy that, even if
nothing happens to the detector (no click or increase in the registered number), the mere fact of it
being present permits to conclude that the photon did not pass through arm A and hence, passed
through arm B, thus provoking the collapse of the packet in this arm.14 In other words, the fact that a
possible event did no happen somewhere affects the state of the system somewhere else. However,
one should clearly avoid the temptation to attribute this process to a “spooky” action at a distance.

It is worth emphasizing again that the theoretical analysis presented above is based on a specific
interpretation of quantum mechanics. Interpretations that do not invoke the collapse of the state of
the system in the act of observation have been proposed.15

14Evidently, this argument considers an ideal detector, to whose vigilance no photon escapes.
15See the additional material entitled Additional Informations for a brief review of the chief alternative interpretations.


